当第一片处理好的矿苔叶片被埋入土壤后,检测仪上的数据很快有了变化:土壤中的汞含量在1小时内下降了10%,铅含量下降了8%,吸金属菌果然在矿苔叶片的保护下开始发挥作用!“有效!”王玲兴奋地喊道,“吸金属菌和矿苔形成了共生关系,矿苔提供保护和养分,吸金属菌吸附重金属,效率比之前提高了3倍!”
但新的问题很快出现了。热液喷口的硫化氢浓度还在不断升高,吸金属菌虽然能吸附重金属,却对硫化氢毫无抵抗力,当硫化氢浓度超过1.0%时,菌液开始变得浑浊,微生物的活性明显下降。
“硫化氢会破坏吸金属菌的细胞膜,导致其死亡!”赵研究员盯着显微镜下的菌液,声音里满是焦虑,“我们必须在2小时内找到分解硫化氢的方法,否则吸金属菌会全部死亡,重金属的问题又会卷土重来!”
风澈看着喷口处不断涌出的热液,心里突然想起之前在热脉辐射时,炽光藻吸收辐射后会释放出一种氧化性物质,这种物质或许能分解硫化氢。他立刻翻到炽光藻的页面,指着标注“释放氧化性物质”的笔记说:“炽光藻!它释放的物质能氧化辐射,说不定也能氧化硫化氢,把它变成无害的硫酸盐!”
王玲立刻提取炽光藻释放的氧化性物质,进行分解测试。结果显示,这种物质能在高温下与硫化氢发生反应,将其转化为硫酸盐,转化率高达80%,但这种物质的半衰期只有30分钟,需要持续供应才能有效降低硫化氢浓度。
“我们可以在喷口周围铺设炽光藻藻床,让它持续释放氧化性物质!”周明提出建议,他立刻调配了一种能延长炽光藻活性的营养液,加入了裂石藤的多糖和沙棘麦的抗热成分,“再用裂石藤的藤蔓将藻床固定在喷口边缘,防止被热液冲毁!”
风澈和大家一起,将炽光藻藻床沿着喷口边缘铺设成一个圆形的“防护圈”。裂石藤的藤蔓像绳子一样将藻床紧紧固定在火山岩上,藻床在热液的烘烤下,发出的蓝光越来越亮,氧化性物质不断释放到空气中和土壤里。检测仪上显示,硫化氢浓度在半小时内就从1.0%降到了0.4%,吸金属菌的活性也逐渐恢复,微生物重新变得活跃起来。
就在大家以为危机即将缓解时,生态站的种子库警报突然响了起来。慕容冷越拿着地质扫描仪跑过来,脸色凝重:“热液喷口正在向种子库方向移动!预计4小时内会抵达种子库,种子库的地基是普通的耐高温混凝土,无法承受180℃的热液和高浓度的重金属,一旦被击中,储存的焰麦种子会全部报废!”
种子库是火山星生态站的核心,里面储存着今年收获的200公斤焰麦种子,还有从沼泽星、沙丘星带来的各种植物样本,一旦被毁,不仅火山星的焰麦种植会功亏一篑,后续的星际植物研究也会受到严重影响。
“我们必须在喷口移动的轨迹上构建一道‘拦截墙’!”赵研究员当机立断,“用火山岩、耐高温金属板和植物共生系统构建一道三层防护墙:第一层用裂石藤的藤蔓和火山岩搭建框架,阻挡热液的冲击;第二层铺设炽光藻藻床,分解硫化氢;第三层埋入处理好的矿苔叶片,吸附重金属!”
大家立刻行动起来。慕容冷越带领助手们搬运厚重的火山岩和耐高温金属板,在喷口移动的轨迹上搭建起一道1.5米高的框架;周明和王玲则在框架内侧铺设炽光藻藻床,连接营养液输送管,确保炽光藻能持续释放氧化性物质;风澈和赵研究员则在框架外侧埋入大量处理好的矿苔叶片,形成一道宽2米的吸附带。
内容未完,下一页继续阅读